High endothelial venules (HEVs): specialized endothelium for lymphocyte migration

Jean-Philippe Girard and Timothy A. Springer

High endothelial venules (HEVs) are specialized postcapillary venules found in lymphoid tissues that support high levels of lymphocyte extravasation from the blood. Here, Jean-Philippe Girard and Timothy Springer highlight the unique properties of HEV endothelium, discuss the molecular mechanisms controlling HEV specialization and review evidence suggesting that HEVs could play an important role in the pathogenesis of chronic inflammatory diseases.

While patrolling the body in search of foreign antigen, lymphocytes continuously circulate from blood, through lymphoid and other tissues, and back through the lymphatics to the blood. This process, called lymphocyte recirculation, allows the dissemination of the immune response throughout the body, and thereby provides an effective immune surveillance for foreign invaders and alterations in the body's own cells.

The first critical step in lymphocyte migration from circulation into tissue is the adhesion of lymphocytes to vascular endothelium. In lymphoid organs, lymphocyte adherence and transendothelial migration occur at specialized postcapillary vascular sites called high endothelial venules (HEVs). Although HEVs are particularly abundant in the T-cell areas surrounding the B-cell follicles, they serve as the sites of entry both for T and B lymphocytes. In humans, HEVs are found in all secondary lymphoid organs (with the exception of spleen, where lymphocyte emigration occurs via the blood sinuses in the marginal zone), including hundreds of lymph nodes dispersed in the body, tonsils and adenoids in the pharynx, Peyer's patches in the small intestine, appendix, and small aggregates of lymphoid tissue in the stomach and large intestine. Moreover, HEV-like vessels are observed in chronically inflamed nonlymphoid tissues and are believed to support lymphocyte recruitment into these sites.

The specialized endothelium of HEVs

Structural features of HEVs

The endothelial cells of HEVs have a 'plump', almost cuboidal appearance very different from the flat morphology of endothelial cells that line other vessels, and are therefore called high endothelial cells by reference to their thickness. Another characteristic of HEVs, revealed by light-microscopic examination, is the presence of a large number of lymphocytes within their walls. This illustrates the function of HEVs in lymphocyte recruitment, and explains why these vessels were implicated in lymphocyte traffic from the time of their initial description.

At the ultrastructural level, high endothelial cells are characterized by a prominent Golgi complex, abundant polyribosomes and rough endoplasmic reticulum. This reveals an intense biosynthetic activity not observed in flat endothelial cells. They also contain many membrane-bound vesicular structures, multivesicular bodies, Weibel-Palade bodies and a variety of dense bodies, indicating that they are involved in secretion. Another important feature of HEVs, revealed by ultrastructural studies, is the existence of discontinuous 'spot-welded' junctions between high endothelial cells. These discontinuous junctions differ from the tight junctions that characterize capillary and arterial endothelium but are similar to the 'non-occluding' junctions found in other postcapillary venules. This property of HEVs probably facilitates the passage of lymphocytes between adjacent high endothelial cells and is likely to be one of the factors allowing massive lymphocyte emigration in HEVs.

HEV-specific markers

Despite intensive efforts, very few HEV-specific markers have been described. The best HEV marker currently available is a carbohydrate epitope recognized by the monoclonal antibody (mAb) MECA-79 (Ref. 13), which stains all HEVs within lymphoid tissues and does not react with postcapillary venules or large vessels in spleen, thymus or nonlymphoid tissues. MECA-79 mAb inhibits lymphocyte emigration through HEVs into lymph nodes in vivo and...
Fig. 1. High endothelial venule (HEV) in a human tonsil. The ‘plump’ high endothelial cells are stained by in situ hybridization with a digoxigenin-labeled cDNA probe encoding hevin, a secreted protein specifically expressed in HEVs from human tonsils. Magnification = ×400.

endothelial cells are not recognized by L-selectin. Similarly, CD34 is widely expressed in endothelial cells in most organs, but functions as an L-selectin counter-receptor only when appropriately decorated by specific oligosaccharides. Stic acids are critical for recognition since sialidase treatment abolishes both L-selectin binding and lymphocyte adhesion to lymph node HEVs in vitro and in vivo. The sLeX molecule has been proposed to function as an HEV ligand for L-selectin. However, sLeX is expressed in endothelial cells that do not mediate lymphocyte recruitment in vivo, thereby implying that the biological HEV ligands for L-selectin must be more complex than this simple tetrasaccharide. A 6'-sulfo-sLeX isoform has recently been identified as a major capping group of GlyCAM-1 (Ref. 32) and sulfation of both GlyCAM1 (Ref. 33) and CD34 (Ref. 27) has been shown to be required for L-selectin recognition. Sulfated ligands for L-selectin have also been detected in rat lymph nodes.

Sulfation may be key to the uniqueness of the HEV ligands. Interestingly, both in humans and rats, the HEV endothelium has been shown to be unique amongst vascular endothelium by virtue of its capacity to incorporate large amounts of 35S04 (Refs 4, 35). The requirement for sulfate in high-affinity L-selectin ligands provides a functional basis for this metabolic specialization of the HEV endothelium. The critical role of sulfation in HEV is further reinforced by the fact that the only HEV-specific mAb currently available, MECA-79, is also sulfation dependent. Similar to L-selectin, MECA-79 recognizes sulfated oligosaccharides decorating GlyCAM-1 and CD34, and inhibition of sulfation of these glycoproteins abrogates recognition. The total absence of crossreactivity of MECA-79 with non-HEV cells of the human body suggests that the HEV-specific sulfated oligosaccharides recognized by MECA-79 and L-selectin are unique structures that are probably even more complex than 6'-sulfo-sLeX.

Clustered of oligosaccharides containing 6'-sulfo-sLeX on mucin-like domains may be required for recognition since free oligosaccharides released from GlyCAM-1 do not bind with recognizable affinity to L-selectin, and all HEV counter-receptors for L-selectin identified to date contain highly O-glycosylated mucin-like domains. Recently, MECA-79 ligands for L-selectin were identified on KG1a hematopoietic cells and neutrophils, CD34 from KG1a cells binds less well to L-selectin than CD34 isolated from tonsil stroma, perhaps reflecting an absence of sulfation.

Lymphocyte emigration in HEVs

Molecular mechanisms involved in lymphocyte migration through HEVs in vivo

Lymphocytes migrating through HEVs in vivo is a very specific and efficient process. Lymphocytes circulating in the blood are able to discriminate between the HEV endothelium and the endothelium lining adjacent nonlymphoid tissues. Approximately 25% of lymphocytes circulating in HEVs will bind and emigrate and it has been estimated that this results in as many as 1.4 × 10^4 lymphocytes extravasating from the blood into a single lymph node (via HEVs) every second. Although it was initially thought that a
single receptor-counter-receptor pair would explain the specificity of lymphocyte emigration in HEVs, it is now clear that the molecular mechanisms conferring this specificity are more complex, with many different molecules involved in a multistep process (Fig. 3; Ref. 8).

Functional inactivation of L-selectin by blocking antibodies\(^2\) or by gene knock- out\(^3\) results in a 99% decrease of lymphocyte migration to peripheral lymph nodes (PLNs) and a 50% reduction of lymphocyte emigration in PP HEVs. This latter result is consistent with the low but significant MECA-79 reactivity with PP HEVs (Ref. 45) and the expression in PP HEVs of a MECA-79\(^+\) subset of MAdCAM-1 molecules able to support L-selectin-mediated lymphocyte rolling in vitro (Ref. 17). Moreover, in sheep, pig and rabbit, staining of PP HEVs with MECA-79 is as intense as the staining of PLN HEVs, suggesting that, in some species, the requirement for L-selectin during lymphocyte emigration in PP HEVs could be even more critical\(^4\).

Studies with pertussis toxin, which is known to induce a profound lymphocytosis in humans and mice, have shown that a G-protein-mediated activation event is required for lymphocyte emigration in PLN and PP HEVs (Ref. 8). Recently, intravital microscopic studies of lymphocyte emigration in mouse PP HEVs have revealed that treatment with pertussis toxin has no effect on the initial 'rolling' interaction of lymphocytes with HEVs but inhibits an activation-dependent 'sticking' event required for lymphocyte arrest\(^5\). This activation can be extraordinarily rapid since lymphocyte sticking can occur within 1-3 seconds after initiation of rolling\(^6\). Although G-protein-coupled receptors for cytokines of the chemokine family have been proposed to play a role in this rapid activation of lymphocyte adhesiveness\(^7\), the local factors and molecules involved in physiological activation of lymphocytes in HEVs remain to be defined.

Two lymphocyte integrins involved in the activation-dependent sticking and arrest of lymphocytes in HEVs have now been characterized (Fig. 3). Antibodies against leukocyte function-associated molecule 1 (LFA-1) (\(\alpha_3\beta_2\); CD11a/CD18) inhibit lymphocyte migration through PLN HEVs by 80% and through PP HEVs by 50% (Ref. 43), which is consistent with the constitutive expression of the LFA-1 counter-receptors intercellular adhesion molecule 1 (ICAM-1) and ICAM-2 on HEVs. Furthermore, antibodies against \(\alpha_4\beta_1\) or its counter-receptor, MAdCAM-1, can inhibit up to 75% of lymphocyte emigration in PP HEVs (Refs 20, 43). In addition to its role in lymphocyte arrest in PP HEVs, the \(\alpha_4\beta_1\)-MAdCAM-1 pair could also mediate the initial recognition of PP HEVs by some lymphocytes, since \(\alpha_4\beta_1\) has recently been shown to mediate L-selectin-independent attachment and rolling on MAdCAM-1 (Ref. 21). This is more likely to be true for lymphoblasts or memory lymphocytes expressing very high levels of \(\alpha_4\beta_1\) than for naive lymphocytes, which are uniformly L-selectin\(^+\)\(\alpha_4\beta_1^+\) and probably absolutely require L-selectin for the initial recognition of PP HEVs. Interestingly, \(\alpha_4\beta_1\), like L-selectin, is localized on the tips of lymphocyte microvilli, which mediate the initial interaction of lymphocytes with HEVs, and this unique topographical distribution is likely to explain why \(\alpha_4\beta_1\), like L-selectin, is able to mediate lymphocyte attachment and rolling under flow\(^8\).

The entire process of lymphocyte sticking to HEVs (rolling, activation, arrest) takes only a few seconds\(^9\), while transendothelial migration and the passage of lymphocytes through the HEV basement membrane occur in approximately ten minutes\(^10\). The molecular mechanisms involved in these two latter steps remain poorly characterized. However, modulation of lymphocyte adhesiveness is likely to be critical since migration of lymphocytes through HEV junctions and the basement membrane requires a succession of adhesive and de-adhesive states. Hevin, a recently identified major secreted component of human HEVs, homologous to the extracellular matrix (ECM) adhesion modulator SPARC (for 'secreted protein acidic and rich in cysteine')\(^11\), could be one of the factors modulating adhesiveness in HEVs and facilitating lymphocyte transendothelial migration.

Other molecules, such as the hyaluron receptor CD44 (Ref. 49) or the vascular adhesion protein VAP-1...
Lymphocyte emigration in high endothelial venules (HEVs). (a) Lymphocytes circulating in the blood initiate contact with the high endothelial cells via microvilli. This initial adhesion is transient and is often manifested in rolling of the interacting cells along the HEV endothelium (step 1: attachment and rolling). Activation of lymphocyte adhesiveness (step 2: adhesion triggering) results in firm attachment, which becomes stable to physiological shear force (step 3: sticking and arrest). Lymphocytes then migrate through endothelial cell junctions and enter lymphoid tissue after shear force (step 3: sticking and arrest). The luminal surface of HEVs is coated by a prominent glycocalyx and this may play an important role in lymphocyte migration (stage 4: transendothelial migration). The luminal surface of HEVs (HEVsl) represents one of the most striking examples of endothelial specialization. It appears that all of the specialized features of HEVs are under the control of the local tissue environment. Indeed, when PLNs are deprived of afferent lymph, HEVs convert from a high endothelial cell phenotype and function. One of these factors could be antigen draining into the lymph from peripheral tissues, since the lack of antigenic stimulation and subsequent activation of the PLNs may result in the absence of cytokines required for the induction of HEV characteristics (see below). Consistent with this hypothesis, direct injection of antigen into the node has been shown to restore the typical HEV morphology in PLNs deprived of afferent lymph. The fact that lymph components are required to maintain the HEV phenotype illustrates perfectly the control of HEV specialization by the local microenvironment.

Components of afferent lymph regulate HEV specialization

HEVs represent one of the most striking examples of endothelial specialization. It appears that all of the specialized features of HEVs are under the control of the local tissue environment. Indeed, when PLNs are deprived of afferent lymph, HEVs convert from a high endothelial cell phenotype and function. One of these factors could be antigen draining into the lymph from peripheral tissues, since the lack of antigenic stimulation and subsequent activation of the PLNs may result in the absence of cytokines required for the induction of HEV characteristics (see below). Consistent with this hypothesis, direct injection of antigen into the node has been shown to restore the typical HEV morphology in PLNs deprived of afferent lymph. The fact that lymph components are required to maintain the HEV phenotype illustrates perfectly the control of HEV specialization by the local microenvironment.

Components of afferent lymph regulate HEV specialization

HEVs represent one of the most striking examples of endothelial specialization. It appears that all of the specialized features of HEVs are under the control of the local tissue environment. Indeed, when PLNs are deprived of afferent lymph, HEVs convert from a high endothelial cell phenotype and function. One of these factors could be antigen draining into the lymph from peripheral tissues, since the lack of antigenic stimulation and subsequent activation of the PLNs may result in the absence of cytokines required for the induction of HEV characteristics (see below). Consistent with this hypothesis, direct injection of antigen into the node has been shown to restore the typical HEV morphology in PLNs deprived of afferent lymph. The fact that lymph components are required to maintain the HEV phenotype illustrates perfectly the control of HEV specialization by the local microenvironment.

Components of afferent lymph regulate HEV specialization

HEVs represent one of the most striking examples of endothelial specialization. It appears that all of the specialized features of HEVs are under the control of the local tissue environment. Indeed, when PLNs are deprived of afferent lymph, HEVs convert from a high endothelial cell phenotype and function. One of these factors could be antigen draining into the lymph from peripheral tissues, since the lack of antigenic stimulation and subsequent activation of the PLNs may result in the absence of cytokines required for the induction of HEV characteristics (see below). Consistent with this hypothesis, direct injection of antigen into the node has been shown to restore the typical HEV morphology in PLNs deprived of afferent lymph. The fact that lymph components are required to maintain the HEV phenotype illustrates perfectly the control of HEV specialization by the local microenvironment.

Components of afferent lymph regulate HEV specialization

HEVs represent one of the most striking examples of endothelial specialization. It appears that all of the specialized features of HEVs are under the control of the local tissue environment. Indeed, when PLNs are deprived of afferent lymph, HEVs convert from a high endothelial cell phenotype and function. One of these factors could be antigen draining into the lymph from peripheral tissues, since the lack of antigenic stimulation and subsequent activation of the PLNs may result in the absence of cytokines required for the induction of HEV characteristics (see below). Consistent with this hypothesis, direct injection of antigen into the node has been shown to restore the typical HEV morphology in PLNs deprived of afferent lymph. The fact that lymph components are required to maintain the HEV phenotype illustrates perfectly the control of HEV specialization by the local microenvironment.

Components of afferent lymph regulate HEV specialization

HEVs represent one of the most striking examples of endothelial specialization. It appears that all of the specialized features of HEVs are under the control of the local tissue environment. Indeed, when PLNs are deprived of afferent lymph, HEVs convert from a high endothelial cell phenotype and function. One of these factors could be antigen draining into the lymph from peripheral tissues, since the lack of antigenic stimulation and subsequent activation of the PLNs may result in the absence of cytokines required for the induction of HEV characteristics (see below). Consistent with this hypothesis, direct injection of antigen into the node has been shown to restore the typical HEV morphology in PLNs deprived of afferent lymph. The fact that lymph components are required to maintain the HEV phenotype illustrates perfectly the control of HEV specialization by the local microenvironment.

Components of afferent lymph regulate HEV specialization

HEVs represent one of the most striking examples of endothelial specialization. It appears that all of the specialized features of HEVs are under the control of the local tissue environment. Indeed, when PLNs are deprived of afferent lymph, HEVs convert from a high endothelial cell phenotype and function. One of these factors could be antigen draining into the lymph from peripheral tissues, since the lack of antigenic stimulation and subsequent activation of the PLNs may result in the absence of cytokines required for the induction of HEV characteristics (see below). Consistent with this hypothesis, direct injection of antigen into the node has been shown to restore the typical HEV morphology in PLNs deprived of afferent lymph. The fact that lymph components are required to maintain the HEV phenotype illustrates perfectly the control of HEV specialization by the local microenvironment.

Components of afferent lymph regulate HEV specialization

HEVs represent one of the most striking examples of endothelial specialization. It appears that all of the specialized features of HEVs are under the control of the local tissue environment. Indeed, when PLNs are deprived of afferent lymph, HEVs convert from a high endothelial cell phenotype and function. One of these factors could be antigen draining into the lymph from peripheral tissues, since the lack of antigenic stimulation and subsequent activation of the PLNs may result in the absence of cytokines required for the induction of HEV characteristics (see below). Consistent with this hypothesis, direct injection of antigen into the node has been shown to restore the typical HEV morphology in PLNs deprived of afferent lymph. The fact that lymph components are required to maintain the HEV phenotype illustrates perfectly the control of HEV specialization by the local microenvironment.
critical role of the lymphoid tissue microenvironment in the control of HEV specialization. It also provides an explanation for the finding that, although high endothelial cells have been maintained in \textit{in vitro} cultures, there has been no report so far that these cells express the L-selectin counter-receptors GlyCAM-1, MAdCAM-1 and CD34. By contrast, a recent study has shown that high endothelial cells rapidly lose the HEV-specific marker MECA-325 when they are grown \textit{in vitro}61.

\textit{Comparison of HEV and blood-brain barrier (BBB) endothelium}

Another striking example of modulation of endothelial specialization by the local tissue environment is provided by the endothelium of the blood-brain barrier (BBB)62. Special features of this endothelium include the presence of tight junctions with very high electrical resistance between adjacent endothelial cells and the expression of specific markers such as H\textsubscript{T}7/neurothelin, a member of the immunoglobulin superfamily (Fig. 4). The ability of brain endothelial cells to form a BBB is not intrinsic to these cells but, rather, is induced by the brain environment: elegant chick–quail chimera experiments have revealed that endothelial cells from brain capillaries that are permitted to vascularize peripheral tissues become leaky61, conversely, endothelial cells originally derived from peripheral capillaries form a competent BBB (Ref. 63) and express HT7/neurothelin\textsubscript{64} when they vascularize brain tissue. Similarly, transplantation of small lymph node fragments into kidneys has revealed that capillaries originally derived from the renal parenchyma invade the residual autograft and differentiate into HEVs (Ref. 65). These experiments suggest that morphologically and functionally distinct endothelial cell types are not predetermined by lineage, and that HEV and BBB endothelial cells may differentiate under influences from their local microenvironments.

In the brain, the cells that are responsible for inducing endothelial cells to form the tight junctions characteristic of the BBB have been identified. Astrocytes, a distinct type of glial cell that surround endothelial cells and contact the basal lamina via end-feet processes, have been shown to induce BBB properties in non-neural endothelial cells \textit{in vivo}66. Astrocyte-conditioned medium was found to be sufficient to induce BBB characteristics, including the expression of HT7/neurothelin\textsubscript{62}. These results emphasize the critical role of the brain microenvironment (astrocytes are the nearest neighbors of brain capillaries) in the control of the specialization of the BBB endothelium.

In the case of HEVs, the cell types involved in the induction and maintenance of the specialized phenotype have not yet been identified. Since subcapsular sinus macrophages and interdigitating dendritic cells (IDCs) are depleted from lymph nodes after the occlusion of afferent lymphatics, these cells have been proposed to play a role in the control of the differentiation of the HEV endothelium56-58. However, when the same macrophage population that is affected by de-afferentation was depleted specifically, no effects on the capacity of HEVs to bind lymphocytes were observed61. Moreover, when the effects of afferent lymphatic occlusion were reversed, and HEVs had regained their characteristic morphology and phenotype, this population of macrophage was not replaced, indicating these macrophages are not required for HEV differentiation65. By contrast, arguments in favor of a role of IDCs in HEV differentiation are very strong. After reversal of occlusion, the restoration of HEV phenotype and function correlates with the reappearance of IDCs (Ref. 58). Study of HEV development in lymph node autografts revealed that the first HEVs appeared after the few surviving IDCs of the graft showed marked proliferation and produced amorphous substances, which may induce the development of HEVs from kidney capillaries66. Similarly, during the development of the human immune system, the appearance of HECA-452+ IDCs in the lymph nodes, tonsils and appendix always preceded the development of HEVs (Ref. 67). Finally, in chronic inflammatory diseases such as rheumatoid arthritis or autoimmune thyroiditis, the development of HEVs is also preceded by the infiltration of HECA-452+ IDCs (Refs 68,69). These studies, together with the observation that ultraviolet irradiation (to which dendritic cells are very sensitive) can greatly reduce lymphocyte migration through PLN HEVs (Ref. 57), support the notion that IDCs play a key role in the induction and maintenance of HEV characteristics (Fig. 4).

Since HEVs are always associated with dense lymphocytic infiltration in peripheral lymphoid organs or sites of chronic inflammation, and the development of HEVs parallels a large-scale influx of lymphocytes, it has been suggested that recirculating lymphocytes may be required for HEV differentiation. However, studies of HEV development in athymic or nude mice have revealed that differentiation of the HEV endothelium is independent of the concentration of lymphocytes in the blood37. Moreover, the loss of HEV characteristics in lymph nodes deprived of afferent lymphatics, despite normal numbers of recirculating lymphocytes in the blood, clearly shows that recirculating lymphocytes are not sufficient to induce the HEV phenotype66. Furthermore, recent studies suggest that lymphocytes are probably not required for induction of the HEV phenotype: MAdCAM-1 and MECA-79 are induced on HEV-like vessels in the pancreas of IFN-γ-transgenic severe combined immunodeficiency (SCID) mice, which are deficient in mature T and B lymphocytes71; and normal HEVs are present in patients with complete DiGeorge syndrome, despite these individuals being athymic and devoid of T cells72. Therefore, lymphocytes are probably not directly involved in the induction of HEV differentiation and are more likely to play an indirect role by allowing a certain level of immune activity required for the maintenance of the specialized HEV phenotype.

\textit{A role for cytokines and ECM proteins in induction and maintenance of HEV specialization?}

One major difference in the microenvironment of HEVs and non-lymphoid postcapillary venules is the presence around HEVs of many cytokines generated in lymphoid organs during activation of lymphoid cells. Therefore, it is not surprising that cytokines appear to

\textbf{Immunology Today} 453 Vol. 16 No. 9 1995
surrounding locally or supplied by afferent lymph, extracellular matrix characterized, the important components appear to be cytokines produced have a 'plump' morphology, incorporate high levels of sulfate, express specific ligands for lymphocytes defined by the HEV-specific monoclonal anti-

extravasation. All of these characteristics are under the control of the lymphoid tissues, the endothelial cells of high endothelial venules (HEVs)

Fig. 4. Control of endothelial specialization by the tissue environment. (a) In the brain, vessels forming the blood-brain barrier (BBB) are characterized by the presence of tight junctions with high electrical resistance and the expression of the specific marker H77/neurothelin. Astrocytes, which contact the basal lamina of these vessels via their end-feet processes, are able to induce these two BBB characteristics in non-neural endothelial cells in vivo. (b) In lymphoid tissues, the endothelial cells of high endothelial venules (HEVs) have a 'plump' morphology, incorporate high levels of sulfate, express specific ligands for lymphocytes defined by the HEV-specific monoclonal antibody (mAb) MECAM-79 and are able to support high levels of lymphocyte extravasation. All of these characteristics are under the control of the lymph tissue environment. Although the factors and cell types involved in the induction and maintenance of the specialized HEV phenotype are not well characterized, the important components appear to be cytokines produced locally or supplied by afferent lymph, extracellular matrix (ECM) proteins surrounding the high endothelial cells and interdigitating dendritic cells.

Abbreviations: IFN-γ, interferon γ; IL-1, interleukin 1; TNF-α, tumor necrosis factor α.

play a critical role in the induction and maintenance of the HEV phenotype. In mice, MECAM-1 and MAdCAM-1 have been shown to be induced in cultured nonlymphoid endothelial cells by IFN-γ (Ref. 19) and TNF-α or IL-1 (Ref. 22), respectively, providing evidence that the specialized phenotype of HEVs could be controlled by local factors associated with immune activity. This possibility is further reinforced by in vivo studies in transgenic mice, which have revealed that MAdCAM-1 and, subsequently, MECAM-79 are induced on HEV-like vessels in the pancreas of mice expressing IFN-γ or IL-10 in pancreatic β cells. Together, these studies suggest that cytokines associated with the immune response play a key role in the induction and maintenance of the specialized HEV phenotype.

However, cytokines are probably not sufficient by themselves to induce HEV specialization, and it is likely that other microenvironmental factors, particularly ECM molecules, are also involved. The composition of the ECM in the vicinity of the high endothelial cells has been proposed to influence the permanent HEV phenotype in particular lymphoid organs. This hypothesis is based on the observation that transplantation of adult PLNs into a mucosal site, or mesenteric lymph nodes into a peripheral site, did not result in any change of the HEV phenotype, despite probable differences in cytokine and cellular composition of lymph nodes and afferent lymph at mucosal and peripheral sites. It is well known that, in vitro, differentiation of endothelial cells can be directed by the ECM on which the cells are grown. The ECM plays a crucial role in functional differentiation and cell-type-specific gene expression and, in many situations, ECM-induced cell differentiation is reflected in changes in cell shape. For example, ECM induces mammary epithelial cells to adopt a highly columnar morphology required for vectorial secretion of milk and, together with lactogenic hormones, plays a critical role in the induction and maintenance of the differentiated phenotype of these epithelial cells. Strikingly, expression of the L-selectin counter-receptor GlyCAM-1, which is generally restricted to the plump endothelial cells of HEVs in lymph nodes, is induced in these columnar epithelial cells during lactation. Therefore, it is tempting to suggest that expression of GlyCAM-1 in the highly differentiated endothelial cells of HEVs could also require the cooperation of two signals, one originating from ECM proteins and the other from cytokines supplied by afferent lymph or generated locally. ECM proteins important for induction of the plump morphology and specialized phenotype of HEV cells could comprise widespread components, such as laminin, that play a key role in differentiation of mammary epithelial cells, or proteins with more-restricted expression such as the recently identified SPARC-like protein hevin. Interestingly, hevin has recently been found to induce a plump endothelial cell phenotype in endocytic cells cultured in vitro (J-P. Girard and T.A. Springer, unpublished). However, confirmation of a role for hevin, or other ECM proteins, in the differentiation of the HEV endothelium will require further studies.

HEVs in chronic inflammatory diseases

HEVs in extralymphoid sites of chronic inflammation in rodents

In the nonobese diabetic (NOD) mouse, which is a model for human insulin-dependent diabetes mellitus (IDDM), vessels with HEV characteristics (e.g. plump endothelial cells, numerous lymphocytes in the vessel walls) are observed during inflammation of the pancreas. Expression of MECAM-79 and MECAM-367 (MAdCAM-1) is induced on these HEV-like vessels in chronic inflammatory diseases in the development of insulitis, whereby lymphocytes infiltrate the pancreatic islets. Staining with MECAM-79 is consistent with the induction of functional L-selectin ligands, CD34, MAdCAM-1 and GlyCAM-1 (Ref. 26). The induction of GlyCAM-1 in the inflamed pancreases of NOD mice is particularly striking since GlyCAM-1 expression in mice had previously been shown to be restricted to PLN and mesenteric lymph node (MLN) HEVs (Ref. 23).
Together, these results indicate that HEV-like vessels induced by chronic inflammation in extralymphoid sites appear to be phenotypically similar to HEVs from lymphoid tissues. The induction of MECA-79 and MAdCAM-1 on the endothelium correlates with the expression of their counter-receptors L-selectin and $\alpha_4\beta_2$ on cells infiltrating the islets. Recent in vivo studies have revealed that these two receptor-counter-receptor pairs, $\alpha_4\beta_2$-MAdCAM-1 and L-selectin-MECA-79, play a major role in the recruitment of lymphocytes from blood into the inflamed pancreas. Treatment of NOD mice with function-blocking mAbs specific for L-selectin and $\alpha_4\beta_2$ integrins resulted in the inhibition of insulitis and the prevention of autoimmune diabetes.

In addition to pancreatic lesions, NOD mice also display inflammatory infiltration of the salivary glands, and HEV-like vessels expressing MECA-79 but not MAdCAM-1 were observed in areas of dense lymphocytic infiltration. Conversely, MAdCAM-1 but not MECA-79 has been found to be induced in brain endothelial cells during chronic relapsing experimental allergic encephalomyelitis (EAE) in Biozzi mouse. The differential expression of MECA-79 and MAdCAM-1 in HEV-like vessels from different sites suggests that the microenvironment in extralymphoid tissues directly influences the phenotype of the HEVs that are induced in chronic inflammatory conditions.

HEVs in human chronic inflammatory diseases

Vessels with HEV characteristics appear in human tissue in association with long-standing chronic inflammation (Table 1). Such vessels exhibit plump endothelial cells, take up and incorporate high levels of 35SO$_4$, contain many luminal and intramural lymphocytes (presumably in the process of extravasating) and mediate in vitro lymphocyte adhesion.

In rheumatoid arthritis, it has been observed that the level of sulfate incorporation as well as the ‘plumpness’ (or ‘tallness’) of the endothelium in areas of lymphocytic infiltration in the synovial membrane are closely related to the concentration of the lymphocytes in the perivascular infiltrates. Similarly, expression of MECA-79 and HECA-452 on these vessels is most pronounced in association with extensive lymphoid infiltrates. Therefore, the development of bona fide HEVs in the synovial membrane of patients with rheumatoid arthritis is likely to facilitate large-scale influx of lymphocytes, leading to amplification and maintenance of chronic inflammation. Although a distinct endothelial cell recognition system has been proposed to control lymphocyte emigration into inflamed synovium, recent studies suggest the participation of several known adhesion molecules (L-selectin, β_1, β_2 and α_4 integrins) acting in sequence, rather than a single synovial receptor-counter-receptor pair.

The development of HEVs after prolonged inflammatory stimulus is not restricted to diseased synovium, but can also occur in other tissues, particularly the gut and thyroid. During chronic inflammation of the gut in inflammatory bowel diseases (Crohn's disease and ulcerative colitis) or the thyroid in autoimmune thyroiditis (Graves' disease and Hashimoto's thyroiditis), areas of dense lymphocytic infiltration contain vessels with plump endothelium expressing MECA-79 and HECA-452. These observations suggest that HEVs could play an important role in the pathogenesis of these diseases by mediating abnormal lymphocyte recruitment to the gut or the thyroid. MECA-79+ venules with plump endothelium have also been detected in other sites of chronic inflammation, including many cutaneous inflammatory lesions. The presence of MECA-79+ HEV-like vessels in many different human chronic inflammatory diseases indicates that L-selectin is likely to play a major role in lymphocyte emigration at chronic inflammatory sites.

Concluding remarks

The HEV endothelium is unique amongst vascular endothelium by virtue of its capacity to recruit large numbers of lymphocytes. In the human body, it is estimated that as many as 5×10^6 lymphocytes extravasate from the blood through HEVs every second. The specificity and efficiency of this process is explained by specialized features of the HEV endothelium, such as
Jean-Philippe Girard is at the Laboratoire de Biologie Moléculaire Eucaryote (LBMU) du CNRS, 118 route de Narbonne, F-31062 Toulouse, France; Timothy Springer is at the Center for Blood Research and Dept of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.

References
44 Arbones, M.L., Ord, D.C., Ley, K. et al. (1994) Immunity 1, 247-260
54 van Dinten-Janssen, A.C.H.M., Pals, S.T., Scheper, R.J.
Heterogeneity of organ-specific autoimmune diseases

In a recent article in *Immunology Today*, Liblau et al. reviewed the role of CD4+ T helper 1 (Th1) and Th2 cells in the pathogenesis of organ-specific autoimmune diseases. Insulin-dependent diabetes mellitus (IDDM) and experimental autoimmune encephalitis (EAE) were discussed as examples of Th1-mediated organ-specific damage. They state that 'similar data exist for other autoimmune diseases'. In addition, they suggest that immunization with autoantigens in the presence of interleukin 4 (IL-4) may provide an intervention strategy in such diseases by diverting the immune response away from the Th1 cells.

This review is representative of the common implication that organ-specific autoimmune diseases are T-cell mediated. In fact, some human organ-specific autoimmune diseases are caused directly by autoantibodies. Among these are Graves' disease (autoantibodies to the thyroid-stimulating hormone receptor) and myasthenia gravis (autoantibodies to the acetylcholine receptor) (reviewed in Refs 2, 3, respectively). Indeed, the incidence of Graves' disease in the general population is tenfold higher than that of IDDM (~100 versus 10 cases per 100,000 per year) [4,5].

Clearly, CD4+ T cells are involved in autoantibody generation. However, in a disease such as Graves' disease, boosting the Th2 response is likely to be inappropriate therapy. Conversely, diverting the Th2 to a Th1 response could lead to thyroiditis and hypothyroidism, a form of autoimmune thyroid disease that is even more common than Graves' disease. We wish to make a plea that human organ-specific autoimmune disease be perceived as heterogeneous, and not as a monolithic group of diseases directly caused by T cells.

References

Sandra M. McLachlan
Basil Rapoport

Thyroid Molecular Biology Unit, Veterans' Administration Medical Center at the University of California, 4150 Clement Street, San Francisco, CA 94121, USA